
International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Improving Diffusion Power of AES Rijndael with
8x8 MDS Matrix

R.Elumalai, Dr.A.R.Reddy

Abstract— AES Rijndael is a block cipher developed by NIST as the Advanced Encryption Standard (AES) replacing DES and
published as FIPS 197 in November 2001 [5] to address the threatened key size of Data Encryption Standard (DES). AES-Rijndael
was developed by Joan Daemen and Vincent Rijmen, Rijndael [4, 5] and was selected from five finalists. Advancement in computation
speed every day puts lots of pressure on AES and AES may not with stand attack for longer time. This work focuses on improving
security of an encryption algorithm, beyond AES. Though there are various techniques available to enhance the security, an attempt is
made to improve the diffusion strength of an algorithm. For enhancing the diffusion power AES Rijndael in MixColumn operation the
branch number of MDS matrix is raised from 5 to 9 using a new 8X8 MDS matrix with trade off of speed [8, 9] and implemented on
R8C microcontroller.

Index Terms— diffusion, MDS matrix, AES Rijndael, security, encryption standard, R8C, microcontroller.

—————————— ——————————

I. INTRODUCTION

HE AES Rijndael algorithm basically consists of four byte
oriented transformation for encryption and inverse
transformation for decryption process over number of

rounds depending on plain text size and key length namely
[1,2],

1) Byte substitution (S-box) a non linear operation, operating
on each of the State bytes independently.

2) Shifting rows (Row transformation) is obtained by shifting
row of states cylindrically.

3) Mix Column transformation, the columns of the State are
considered as polynomials over GF(28) and multiplied modulo
X4 + 1 with a fixed polynomial c(x), given by
c(x) = ‘03’ x3 + ‘01’ x2 + ‘01’ x + ‘02’
The inverse of MixColumn is similar to MixColumn. Every
column is transformed by multiplying it with a specific
multiplication polynomial d(x), given by
d(x) = ‘0B’ x3 + ‘0D’ x2 + ‘09’ x + ‘0E’ .

4) Add round key, a Round Key is applied to the State by a
simple bitwise EXOR. The Round Key is derived from the
Cipher Key by means of the key schedule. The Round Key
length is equal to the block length.

The round transformation in C pseudo can be written as [1]
 Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);
}

The final round of the cipher is slightly different. It is defined
by:
FinalRound (State,RoundKey)
{
ByteSub(State) ;
ShiftRow(State) ;
AddRoundKey(State, roundkey);
}

In AES Rijndael confusion and diffusion are obtained by non-
linear S-Box operation and by the linear mixing layer over
rounds respectively.

II. DIFFUSION IN AES RIJNDAEL

The linear mixing layer guarantees high diffusion over
multiple rounds. Rijndael in his proposal approved by NIST
replacing DES in the 2001 proposed MixColumn which
operates on space of 4-byte to 4-byte linear transformations
according to the following criteria[1,2]:
1. Invertibility;
2. Linearity in GF(2);
3. Relevant diffusion power;
4. Speed on 8-bit processors;
5. Symmetry;
6. Simplicity of description.
Criteria 2, 5 and 6 have lead to the choice of polynomial
multiplication modulo x4+1. Criteria 1, 3 and 4 impose
conditions on the coefficients. Criterion 4 imposes that the
coefficients have small values, in order of preference ‘00’,
’01’, ’02’, ’03’…The value ‘00’ implies no processing at all,
for ‘01’ no multiplication needs to be executed, ‘02’ can be
implemented using xtime and ‘03’ can be implemented using
xtime and an additional EXOR. The criterion 3 induces more
complicated conditions on the coefficients.

T

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

In Mix Column, the columns of the State are
considered as polynomials over GF (28) and multiplied
modulo x4 + 1 with a fixed polynomial c(x) [1,2]. The
Mix Column transformation operates independently on every
column of the state and treats each sub state of the column as
term of a(x) in the operating equation b(x)=c(x) a(x), where
c(x)= ‘03’X3+’01’X2+’01’X+’02’.This polynomial is co-prime
to (X4 + 1) For example, in the figure1. a(x) is
a0,jX3+ai,jX2+a2,jX+a3,j and it is used as multiplicand of
operation.

Figure1. MixColumn operation

This can be represented as

 =
02 03 01
01 02 03
01
03

01
01

02
01

01
01
03
02

Where c(x) has been represented by a circular matrix of 4x4.

Pseudo C code for Mixcolumn operation with Rijndael circular
matrix is [10]

MixColumn (S)

{for (c=0 to3)

 Mixcolumn (sc)

}

Mixcolumn (col)

{ copycolumn (col, t) //t is temporary column

 Col0 (0x02) t0 (0x03) t1 t2 t3

Col1 t0 0x02) t1 (0x03) t2 t3

 Col2 t0 t1 (0x02) t2 (0x03) t3

 Col3 (0x03) t0 t1 t2 (0x02) t3

}

Inverse of MixColumn in Rijndael uses a MixColumn
transformation with different polynomial i.e.

c(x) = ‘03’ x3 + ‘01’ x2 + ‘01’ x + ‘02’ for MixColumn and

 d(x) = ‘0B’ x3 + ‘0D’ x2 + ‘09’ x + ‘0E’ for inverse
MixColumn

The Branch Number of a linear transformation is a
measure of its diffusion power. Let F be a linear
transformation acting on byte vectors and let the byte weight
of a vector be the number of nonzero bytes [1,2]. The byte
weight of a vector is denoted by W (a).
Definition: The branch number of a linear transformation F is
Min 0 (W ((a) + W (F (a)))

A non-zero byte is called an active byte. For MixColumn it
can be seen that if a state is applied with a single active byte,
the output can have at most 4 active bytes, as MixColumn acts
on the columns independently. Hence, the upper bound for the
branch number is 5. The coefficients have been chosen in such
a way that the upper bound is reached. If the branch number is
5, a difference in 1 input (or output) byte propagates to all 4
output (or input) bytes, a 2-byte input (or output) difference to
at least 3 output (or input) bytes. Moreover, a linear relation
between input and output bits involves bits from at least 5
different bytes from input and output.

III. OBJECTIVE OF THE PAPER

The Mixcolumn transformation of Rijndael so constructed
has the property that the upper bound for the Branch number,
which is 5, is reached. But the Inverse Mixcolumn
transformation is not the same as the Mixcolumn
transformation i.e. Mixcolumn does not have self inverse. This
has led to degradation in performance on 8-bit processors for
the Inverse cipher because it uses Inverse Mix Column and a
modified Key schedule. Since the cipher and its inverse use
two different transformations, a circuit that implements
Rijndael does not automatically support the computation of the
inverse of Rijndael and consumes more hardware when
implemented on FPGA.

This work involves two important parameter for improving
the diffusion strength of AES.

1. To find 8x8 matrix which has branch number 9
greater than 5 which is the case in AES Rijndael so
that diffusion strength of the algorithm increases?

2. The matrix should be self inverse so that same matrix
can be used for inverse MixColumn operation, which
decreases the complexity of circuit and occupies less
silicon area when implemented on hardware.

IV. MDS MATRIX

In AES linear transformations in the form of mappings based
on Maximum Distance Separable (MDS) codes are used to
achieve diffusion. A linear code over Galois field GF(2p) is
denoted as an (n, k, d)-code, where n is the symbol length of
the encoded message, k is the symbol length of the original
message, and d is the minimal symbol distance between any
two encoded messages[10].
Theorem 1: An (n, k, d)-code with generation matrix G = [I |
C] is MDS if, and only if, every square sub matrix of C is
nonsingular.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

An (n, k, d)-code is MDS if d = n – k + 1. A (2k, k, k+1)-
code with generation matrix G = [I | C], where C is a k k
matrix and I is an identity matrix, determines an MDS
mapping from the input X to the output Y through matrix
multiplication over a Galois field as follows:

 fM: X Y = C · X (1)

where

X = .. Y = .. C =

, . . . ,
.
.
.

,

.

.

.

. . .

. . .
 . . ,

Each entry in X, Y, and C is an element in GF(2p). For a
linear transformation, the branch number is defined as the
minimum number of nonzero elements in the input and output
when the input elements are not all zero.

There are different types of matrices which exhibit this
property we will discuss two important types one used in
Rijndael and other used in the work.

1. Circulant matrices: Given k elements 0,…., k-1, a
circulant matrix A is constructed with each entry Ai,j
= (i+j) mod k. The probability that a circulant matrix
is suitable for an MDS mapping C is much higher than
that of a normal square matrix.

 The Matrix used in Rijndael is a circulant
MDS Matrix. In Rijndael, substitution permutation
network (SPN) uses optimal non-involution MDS
mappings. When an SPN uses a non-involution MDS
mapping optimized performance only for encryption,
the inverse MDS mapping used in decryption has a
higher complexity

2. Hadamard matrices: Given k elements 0, . . ., k-1, a
Hadamard matrix A is constructed with each entry Ai,j
= i j. Each Hadamard matrix A over a finite field has
the following properties: A2 = I where is a
constant. When = 1, A is an involution matrix. An
involution MDS mapping is required by an involution
SPN. When used in an SPN, the involution MDS
mapping produces equally optimized performance for
both encryption and decryption.

V. MATHEMATICAL MODEL

The matrix with high branch number and involution
characteristics is found by applying Brute force method after
arriving at required polynomial. The obtained polynomial
H= had(01x, 03x, 04x,05x,06x,08x,0Bx,07x)
Using this polynomial 8 8 matrix is constructed. This matrix
is checked for the involution property. This matrix is
constructed based upon the types explained above. Then the

MDS property of the matrix is calculated. i.e. an (n, k, d)-code
is MDS if d = n – k + 1.This can be done by checking the
branch number of the transformation. The input with one or
two active byte column is multiplied with the matrix and the
output column is checked, if the total number of active bytes
including input and output bytes is equal to 9 then it satisfies
the property of MDS. Finally this matrix is found out and
verified that it satisfies the involution property and the MDS
property with (16, 8, 9) code.

The linear transformation matrix is GF(28) GF(28) is a
linear mapping based on the [16,8,9] MDS code with
generator matrix GH=[IH],
where H=had(01x, 03x, 04x,05x,06x,08x,0Bx,07x) is the
polynomial found using brute force technique. The Hadamard
matrix with involution property based on above polynomial
shown below;

=

01
03
04
05
06
08
0
07

03
01
05
04
08
06
07
0

04
05
01
03
0
07
06
08

05
04
03
01
07
0
08
06

06
08
0
07
01
03
04
05

08
06
07
0
03
01
05
04

0
07
06
08
04
05
01
03

07
0
08
06
05
04
03
01

A simple inspection shows that matrix H is symmetric and
unitary. Therefore it is an involution transformation. It may be
verified that this transformation has the branch number equal to
9 and also satisfies the criterion 3.

In Rijndael the state matrix to each function is considered
as a 4 4 matrix. Here inside the MixColumn function the
state matrix is converted into an 8 2 matrix and multiplied
with the MDS matrix. Then the resulting 8 2 matrix is
converted into a 4 4 matrix and passed to the next function.

The following Example describes about the multiplication
of the state matrix with the above MDS matrix.

Let the state matrix input to the MixColumn state be

01 01 01
02 02 02
03
04

03
04

03
04

01
02
03
04

In MixColumn transformation the state matrix has to be
multiplied with the standard matrix generated by the
polynomial. In this scheme the multiplication of the matrix is
performed with new 8x8 matrix generated by brute force
technique which satisfies the involution property as shown
below;

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

H=

01
03
04
05
06
08
0
07

03
01
05
04
08
06
07
0

04
05
01
03
0
07
06
08

05
04
03
01
07
0
08
06

06
08
0
07
01
03
04
05

08
06
07
0
03
01
05
04

0
07
06
08
04
05
01
03

07
0
08
06
05
04
03
01

X

01 01
02 02
03 03
04 04
01 01
02 02
03 03
04 04

=

08 08
3 3
2 2
1 1
08 08
3 3
2 2
1 1

The state matrix after the Mix Column transformation is

08 08 08
3 3 3
2
1

2
1

2
1

08
3
2
1

 The difference between the diffusion powers of the Mix
column step of Rijndael algorithm and the new proposed Mix
column are explained in the Figure 2 and 3. At the end of first
round, active bytes are 8 in case of 8x8 MDS, whereas it is 4
in case of 4x4 MDS. This shows an encryption algorithm
designed using 8x8 MDS will provide more security compared
to 4x4 MDS. However, this is achieved at the cost of
additional computation.
 A B C D

Figure 2 - Diffusion states for encryption in the AES in the
first round. A – S-BOX, B – Shift Row, C – MixColumn
and D – ADDRoundKey

 A B C D

Figure 3 - Diffusion states for revised encryption with 8x8
matrix in the AES in the first round. A – S-BOX, B – Shift
Row, C – MixColumn and D – ADDRoundKey.

VI. IMPLENTATION ON MICROCONTROLLER

A. Renesas R8C microntroller
The R8C/Tiny Series of single-chip microcomputers was

developed for embedded applications by Renesas. The
R8C/Tiny Series supports instructions tailored for the C
language, with frequently used instructions implemented in
one-byte op-code. It thus allows development of efficient
programs with reduced memory requirements when using
either assembly language or C. Furthermore, some instructions
can be executed in a single clock cycle, enabling fast
arithmetic processing.

R8C has features like CPU core operating at 20MHz, on
chip ROM,RAM, and data Flash, programmable I/O ports, 9
interrupts with 7 priority levels, 14 bit watch dog timer, 3
timers, 4 UARTs, synchronous communication port, I2C bus,
LIN module, USB, 10 channel 10 bit ADC and 2 comparators
which makes it most preferred industrial application
microcontroller.

For implementation on R8C microcontroller, Renesas High
performance Embedded workshop V.4.07.01 with simulator
version 4.1.04.00 which is provided by Renesas was chosen for
convenience. It provides integrated development environment
composed of compiler and simulator also. Every cycle number
and code size output depends on embedded workshop.

B. Simulation result
Code was run on the Renesas High performance embedded

workshop V.4.07.01 with simulator version 4.1.04.00 with test
vector from Brian Gladman’s technical paper [11]. The
implementation was optimized many times.

Module Cycle Code (Byte)

Precomputation 2178 1649
ByteSub 115 32
ShiftRow 51 256

MixColumn 201 134
AddRoundKey 127 48

branch 19 12
Total 8276 2135

(round0-10) 5917 784
Figure 4 – Simulation results for 10 round AES.

The total number includes consideration of the number of
rounds. In this implementation, the message block and key
length are 128-bit each. Therefore 10 rounds constitute one
encryption procedure. In the 10 rounds of encryption
procedure, precomputation is executed just once and other
modules have all different execution times as in Cycle column
of the Table2. Whereas, code length weight factor is irrelevant
with cycle number weight factor because some modules are
reused every time while the other modules are not. For
example, AddRoudKey module executed at round0, round1-9
and round10 but MixColumn executed only at round1-9,

l

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

which makes the different code weight factor 3 and 1
respectively.

Module Cycle Code (Byte)

Precomputation 1 1
ByteSub 10 2
ShiftRow 10 2

MixColumn 9 1
AddRoundKey 11 3

branch 1 1
 Table2. Weight factor of each module

With weight factor total number of cycle and code are
computed by equation below.
Total cycle number =

Cycle number(i) * weight factor(i)

Total code size =
Code number(i) * weight factor(i)

Where ’ i’ is every module

Module Cycle Code (Byte)

Precomputation 2178 1649
ByteSub 115 32
ShiftRow 51 256

MixColumn 243 149
AddRoundKey 127 48

branch 19 12
Total 8376 2195

(round0-10) 6171 824
 Figure 4 – Simulation results of revised 10 round AES
 with 8x8 MixColumn..

 Figure 5 – Comparison of number of cycle consumed by
 two schemes.

 Figure 5 – Comparison of number of code consumed by
 two schemes.

VII. CONCLUSION

The MixColumn module is still takes much part of cycle
number. This module is also the critical part for register
scheduling because it need 8 multiplication with 8 different
sub state at the same time while keeping their initial state.

The result shows the number of cycle required is 20.08%
more and code area consumed is 11.19% more in the case of
revised AES with 8x8 MixColumn compared to AES Rijndael.
The increase in cycle and code memory is the trade off for the
increase in diffusion strength which increases the security of
the algorithm.

REFERENCES

[1] Daemen and V. Rijmen, AES Proposal: Rijndael (Version 2). NIST
AES

[2] NIST, Advanced Encryption Standard (AES), (FIP PUB 197),
November 26, 2001

[3] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[4] K. Ohkuma, H. Muratani, F. Sano, and S, Kawamura, "The Block
Cipher Hiero-crypt", Workshop on Selected Areas in Cryptography.
SAC 2000, Lecture Notes in Computer Science 2012, Springer-Verlag,
pp. 72-88, 2001.

[5] P. Barreto and V. Rijmen, "The Anubis Block Cipher", NESSIE
Algorithm Submission 2000, available on:
www.cosic.esat.kuleuven.ac,be/nessie.

[6] P. Barreto and V. Rijmen, "The Khazad Legacy-Level Block Cipher",
NESSIE Algorithm Submission, 2000, available on:
www.cosic.esat,kuleuven.ac.be/nessie

[7] A. Rudra, P.K. Dubey, C.S. Jutla, V, Kumar, J. R. Rao, and P. Rohatgi,
"Efficient Rijndael Encryption Implementation with Composite Field
Arithmetic", Cryptographic Hardware and Embedded Systems - CHES
2001, Lecture Notes in Computer Science 2162, Springer-Verlag, pp.
171-184, 2001

[8] Lu Xiao and Howard M. Heys “Hardware Design and Analysis of Block
Cipher Components”

[9] Aarti Singh “Study of MDS Matrix used in Twofish AES algorithm and
its VHDL implementation” M.Tech thesis.

http://www.ijser.org/
http://www.cosic.esat.kuleuven.ac/
http://www.cosic.esat/

International Journal of Scientific & Engineering Research Volume 2, Issue 3, March-2011 6
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

[10] Behrouz A.Forouzan “Cryptography and network security “ TATA-
Mcgraw hill publication 2007 edition.

[11] A Specification for Rijndael, the AES Algorithm v3.3, Brian Gladman,
May 2002

[12] P. Barreto and V. Rijmen, “The Khazad Legacy-Level Block Cipher”,
NESSIE Algorithm Submission, 2000, available on:
www.cosic.esat.kuleuven.ac.be/nessie.

[13] R. Anderson, E. Biham, and L. Knudsen, “Serpent: a Proposal for the
Advanced Encryption Standard”, AES Algorithm Submission, available
on: www.cl.cam.ac.uk/¢rja14/serpent.html

[14] A. Youssef, S. Mister, and S. Tavares, “On the Design of Linear
Transformations for Substitution-Permutation Encryption Networks”,
Workshop on Selected Areas in Cryptography - SAC '97, Ottawa, 1997.

AUTHORS PROFILE

Dr.A.R.Reddy is professor in the department of Department of Electronics and
Communication Engineering, at Madanapalli Institute of Science and
Technology, Madanapalli, Andrapradesh, India. He received M.Tech and
Ph.D from IIT Kharagpur, India. His field of interest is Cryptogharaphy,
Embedded system and VLSI.

R.Elumalai is Ph.d student in Department of Electronics and Communication
Engineering, at Vinayaka Mission University, Salem, Tamilnadu, India. He
received M.Tech from University Visvesvaraya College of Engineering,
Bangalore University. India. His field of interest are Embedded system,
 VLSI and cryptography.

http://www.ijser.org/
http://www.cosic.esat.kuleuven.ac.be/nessie.
http://www.cl.cam.ac.uk/

